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Introduction

With advances in next-generation sequencing (NGS) technology,

the volume of generated sequencing data continues to grow

exponentially. With this growth comes the demand for fast and

efficient analytical methods thatmaintain high standards in

accuracy for variant calling. The Illumina DRAGEN (Dynamic Read

Analysis forGenomics) Bio-IT Platform provides highly accurate

ultra-rapid secondary analysis of NGS data. The DRAGEN Platform

uses highly reconfigurable field-programmable gate array

technology (FPGA) to dramatically speed up secondary analysis of

NGS data, includingmapping, alignment, and variant calling.

Fundamental features of the DRAGEN Platform address common

challenges in genomic analysis, such as lengthy compute times

andmassive volumes of data. The DRAGEN Platform delivers

quickness, flexibility, accuracy, and cost effectiveness. The

reprogrammable nature of the DRAGEN Platform enables

improvement of the algorithms to accommodate newNGS

applications. The speed of the platform enables developers to

iterate quickly on algorithm designs using computationally

intensive methods that are impractical with traditional software only

models. As such, the accuracy of the DRAGEN Platform has

continuously improvedwith new versions, andDRAGEN now

provides an excellent solution for small variant calling in germline

whole-genome sequencing (WGS).
This application note describes recent improvements in the

Illumina DRAGEN Bio-IT Platform for rapid secondary analysis, and

demonstrates speed and accuracy using three publicly available

WGS datasets.We present benchmarking comparisons of

DRAGEN v3.2.8 versus other pipelines, including BWA-

MEM+GATK4 andDRAGEN v2 (Figure 1). Variant calling results

from each pipeline were compared to a "truth set" for reference

calls to identify false positives (FPs) and false negatives (FNs).

Metrics used for pipeline comparisons are end-to-end run times

and accuracymetrics such as recall, precision and FP+FN. The

combination of speed, accuracy, andwide range of available

applications position the DRAGEN Platform to revolutionize the

landscape of genomic analysis.

DRAGEN v3 algorithms for accuracy
improvements

DRAGEN v3 implements the latest algorithm updates for detection

of single-nucleotide polymorphisms (SNPs) and

insertions/deletions (indels), which provide improvements in the

precision and analytical sensitivity. Improvementswere made in

four areas for variant calling: Sample-specific indel errormodel,

rigorousmathematical models of correlated pileup errors, an

optimized approach to exhaustively represent an exponential

number of haplotype candidates in variant-rich or noisy regions,

and column-wise augmentation of the list of events generated by

De-Bruijn graph assembly. These upgrades result in modest speed

up gains, while elevating standards in accuracy compared to

pipelines evaluated in this paper. Each algorithm improvement is

described in more detail in the appendix.

Figure 1: Design of benchmarking comparison study—FASTQ files from 3 datasets
were run through three analysis pipelines to generate query VCF files. The Variant
Calling Assessment Tool (VCAT) was then used to identify TPs, FPs, and FNs,
based on comparison of variant calls to reference variants in the NIST truth set.

Methods

Recommended best practices for benchmarking were followed

closely.1To demonstrate speed and accuracy with DRAGEN v3, a

comparison study was done using three datasets, from different

library preparations, generated from the NA12878 sample (Figure

1). Briefly, the FASTQ file from each dataset was used as input for

secondary analysis from independent pipelines (DRAGEN v3.2.8,

DRAGEN v2, andBWA+GATK2). Resultant VCF files from each

pipeline (QUERY VCFs) were uploaded to a project in

BaseSpace™ Sequence Hub. The Variant Calling Assessment

Tool (VCAT v3.1.1 with Hap.py version 0.3.10) was used to

compare each QUERY VCF file to a reference variant “truth set” in

order to identify true or false variant calls. Results were collected

and tabulated for comparisons between pipelines. All input data,

analysis results, and evaluation tools are freely available in the

BaseSpace project.3More detailed descriptions of methods are

described in the Appendix.

Accuracy Improvements in Germline Small
Variant Calling with the DRAGENTM Platform
Several algorithms for accuracy improvements enable small variant detection with high
sensitivity and specificity, while also maintaining DRAGEN standards for computation speed
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Results of benchmarking comparisons

Results for both run times and accuracy comparisons demonstrate

that DRAGEN provides a powerful solution for secondary analysis

of NGS data.

DRAGEN accuracy: FP+FN, recall , and
precision

Although DRAGEN v2was already competitive with industry-

leading informatics solution, DRAGEN v3 has several new

modifications (described in the algorithmmethods section) that

result in significant accuracy improvements. The results of this

benchmarking comparison also demonstrate that DRAGEN v3

improvementsmake it superior compared to other popular analysis

pipelines, including a previous version of DRAGEN, for all accuracy

metrics analyzed in the study.

When the FP+FN metric was evaluated forSNVdetection,

DRAGEN v3 performedwith significantly higher accuracy than

both the BWA+GATK4 andDRAGEN v2 pipeline for all three

datasets (Figure 2). When the FP+FN metric was evaluated for

indel detection, DRAGEN v3 performed better than the

BWA+GATK4 pipeline for all three datasets, while also showing

further improvement between DRAGEN v3 andDRAGEN v2

(Figure 3).

Figure 2: False positives and false negativeswith SNV detection—Raw data files
(FASTQ) from three datasetswee analyzed by three independent pipelines. Each
dataset (TruSeqDNA PCR-free, Nextera DNA Flex, and TruSeqDNA Nano) was
generated from NA12878 sample DNA, and variant calls (VCF) from each analysis
pipeline were compared to NIST truth set (also based on NA12878 sample) to
identify FPs and FNs.

When evaluating the precision and recall metrics, the advantage of

DRAGEN v3 algorithm improvements are evident for both SNP and

indel detection. Values for both precision and recall are

consistently above 99%for all pipelines andwith each SNV

detection dataset (Table 1). ForSNP detection, DRAGEN v2was

comparable with BWA+GATK4. But DRAGEN v3 shows significant

improvement in both recall and precision over the other two

pipelines. For indel detection, DRAGEN v2 showed higher

accuracy than BWA+GATK4, while DRAGEN v3 yielded further

improvement overDRAGEN v2 for both recall and precision (Table

2).

Figure 3: False positives and false negativeswith indel detection—Raw data files
(FASTQ) from three datasetswere analyzed by three independent pipelines. Each
dataset (TruSeqDNA PCR-free, Nextera DNA Flex, and TruSeqDNA Nano) was
generated from NA12878 sample DNA, and variant calls (VCF) from each analysis
pipeline were compared to NIST truth set (also based on NA12878 sample DNA)
to identify FPs and FNs.

Table 1: Sensitivity and specificity of SNV detection

Precision Recall

Datasets DRAGEN v3 DRAGEN v2 BWA+GATK DRAGEN v3 DRAGEN v2 BWA+GATK

TruSeqDNA PCR-free 99.95% 99.68% 99.69% 99.96% 99.95% 99.95%

Nextera DNA Flex 99.92% 99.70% 99.70% 99.89% 99.88% 99.88%

TruSeqDNA Nano 99.87% 99.50% 99.58% 99.88% 99.87% 99.86%

Table 2: Sensitivity and specificity of indel detection

Precision Recall

Datasets DRAGEN v3 DRAGEN v2 BWA+GATK DRAGEN v3 DRAGEN v2 BWA+GATK

TruSeqDNA PCR-free 99.71% 99.66% 99.58% 99.62% 99.55% 99.13%

Nextera DNA Flex 98.37% 97.54% 91.53% 97.56% 97.05% 95.01%

TruSeqDNA Nano 97.56% 96.39% 89.37% 96.57% 95.63% 93.71%
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DRAGEN speed

DRAGEN run times comparison were collected for both the on-

cloud and on-site solutions. For the on-site solution, DRAGEN v3

was compared to BWA+GATKwith both pipelines run on the same

server. For the on-cloud solution, DRAGEN v3 run on BaseSpace

Sequence Hubwas compared to BWA+GATK run on Terra.4

DRAGEN accelerates both the mapping process and variant

calling, which can be run independently. Though not captured

here, it is also worth noting that upstream of the secondary

analysis, DRAGEN also supports acceleratedBCL2FASTQ

conversion, which greatly improves speed and efficiency while

producing identical FASTQs. Also worth noting is that DRAGEN

automatically outputs an exhaustive list of QC metrics, both at the

mapping and variant calling level, with little to no run time

overhead. This is in contrast to other pipelineswhich rely on slow-

running third party tools (eg, Samtools, Picard) to acquire QC

metricswith significant run time overhead.

When executions speedswere measuredwith pipelines run on the

same on-premise server, DRAGEN v3was significantly faster than

BWA+GATK, with speed up gains in the range of 16-18× (Figure 4).

Figure 4: Analysis run time comparisons on-premise and in the cloud—(A)
DRAGEN v3 andBWA+GATK run on the same on-premise server. (B) DRAGEN v3
run on BaseSpace Sequence Hubwas compared to BWA+GATK run on Terra.

When executions speedswere measuredwith pipelines run in the

cloud, DRAGEN v3 on BaseSpace Sequence Hubwas

significantly faster than BWA+GATK run on Terra, with speed up

gains in the range of 13-16×.

Summary

As genomic applicationsmove towards precise characterization of

difficult regions of the genome, andmeasuring low allele frequency

calls from sampleswith high noise level, DRAGEN proves to be the

best-suited platform to process the NGS data of the future both

efficiently and accurately.

DRAGEN speed not only enables researchers to keep upwith the

increasing throughput of NGS instruments, but just as importantly, it

also enables fast iterations for continuous improvement of its

algorithms to provide high accuracy.

Appendix

Detai led description of new algorithms

Sample-spec ific PCR er ror mode l

One of the challenges in variant calling is distinguishing indel errors

from true variants. To do so, variant callers often employ a Hidden

MarkovModel (HMM), which models the statistical behavior of

indel errors, as part of the probability calculation. The HMM

typically has input parameters, GapOpen Penalty (GOP) andGap

Continuation Penalty (GCP), which are directly related to the indel

error rate (ie, indel error rate = f(GOP,GCP)). Indel errors are more

likely in the presence of short tandem repeats (STRs), and the error

probability (and thusGOP andGCP) may depend on both the

period and the length of the STR. The error processmay differ

significantly from one dataset to another, depending on factors

such as PCR amplification. For accurate detection, it is important

to use HMMparameters that accurately model the error process

on a per sample basis. However, typical variant callers often use

fixed parameters or non-sample-specific predetermined functions

that fail to accurately model the error process, resulting in poor

detection performance.

The HMM auto calibration implemented in DRAGEN v3 addresses

the above problem by estimating the PCRparameters directly from

the dataset being processed. This operation is performed after

mapping & alignment and prior to variant calling, without

knowledge of the ground truth andwithout using external

databases of knownmutations. The parameters depend on both

the STRperiod and the repeat length.

For a given STRperiod and length, a set of N loci with the desired

period and length is selected, and the algorithm examines the

pileups of readsmapped to those loci, counting the indels

observed at each locus. The key idea is that by considering a

sufficient number of loci, it’s possible to accurately estimate the

parameters of interest. We do so by finding the parameters that

maximize the probability of producing the set of N observed

pileups. If the number of parameters tomaximize the probability

over is small enough (eg, 2), an exhaustive search is possible. In

the current implementation of DRAGEN v3, the optimization is

performed over two parameters: GOP and alpha, which indicates

the probability of indel variants of any non-zero length. For each

STRperiod and length considered, the search outputsGOP and
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alpha thatmaximize the probability of producing the set of N

observed pileups, and those values are used as input to the HMM.

Extending the search beyond 2 parameters is also possible and

would provide further improvements.

Base qua lity dropoff (BQD )

Conventional variant callers are designedwith the assumption that

sequencing errors are independent across reads; following this

assumption, it’s very unlikely thatmultiple identical errorswill occur

at a specific locus. However, after analyzing NGS datasets, it was

observed that bursts of errors are farmore common than would be

predicted by the independence assumption, and these bursts can

result in lots of false positives.

Fortunately, these errors have distinct characteristics

differentiating them from true variants. The BQD (base quality drop

off) algorithm implemented in DRAGEN v3 is a detection

mechanism that exploits certain properties of those errors (strand

bias, localization of the error in the read, lowmean base quality, at

the locus of interest) and incorporates them into the probability

calculation in a simple and robustmanner, in the genotyper. New

genotype candidates hypotheses are added to the legacy list of

diploid genotypes (those that assume independent pileup errors).

For example, in the case of a locuswith 1 ALT allele, in addition to

considering P(G00|R), P(G01|R), P(G11|R), we add twomore

hypotheses as P(G00,E1|R) and P(G11,E0|R), where allele E0 and

E1 represent reference allele and ALT allele coming from a

sequencing error. The properties of those errors, such as strand

bias, localization of the error in the read andmean base quality are

incorporated in the calculation of P(G00,E1|R) and P(G11,E0|R).

Then the winning genotype is taken overmax (max(P(G00|R), P

(G00,E1|R)), P(G01|R), max(P(G11|R), P(G11,E0|R))).

Being able to characterize correlated sequencing errors from

within the core of the variant caller results in a significant gain in

specificity because a lot of FP calls are removed. It also helps

sensitivity by correcting genotype errors.

Fore ign read detection (FRD )

Conventional variant callers treatmapping errors as independent

error events per read, ignoring the fact that such errors typically

occur in bursts. This can result in variant calls emittedwith very high

confidence scores in spite of lowMAPQ and/or skewedAF. To

mitigate this problem, conventional variant callers typically filter out

reads upstream of variant calling, based on a MAPQ threshold (i.e.,

readswith MAPQ< threshold are excluded from the calculation).

However, this discards valuable evidence fromwithin the variant

caller and does a poor job of suppressing false positives.

DRAGEN v3 has implemented Foreign ReadDetection (FRD),

which is an extension to the legacy genotyping algorithm by

incorporating an additional hypothesis that some read(s) in the

pileup are foreign reads (i.e., their true location is elsewhere in the

reference genome and/or are originated from outside of the

reference genome (i.e. sample contamination)). The algorithm

exploitsmultiple properties (skewed allele frequency and low

MAPQ) and incorporates this evidence into the probability

calculation in a mathematically rigorousmanner.

New genotype candidates hypotheses are added to the legacy list

of diploid genotypes (those that assume independent pileup

errors). For example, in the case of a locuswith 1 ALT allele, in

addition to considering P(G00|R), P(G01|R), P(G11|R), we add two

more hypotheses as P(G00,F1|R) and P(G11,F0|R), where allele F0

and F1 represent reference allele and ALT allele coming from a

mapping error. The properties of those errors, such as allele depth

andMAPQ are incorporated in the calculation of P(G00,F1|R) and

P(G11,F0|R). Then the winning genotype is taken overmax (max(P

(G00|R), P(G00,F1|R)), P(G01|R), max(P(G11|R), P(G11,F0|R))).

Sensitivity is improved from rescuing FN, correcting genotypes and

enabling lowering of the MAPQ threshold for incoming reads into

the variant caller. Specificity is improved from removing FP and

correcting genotypes.

FRD is a more powerful tool than post-VCF filtering approaches to

improve F-measure, because, rather than simply detecting

suspicious results (e.g. based on allele depth or read errors) post

variant caller, the detection algorithm directly incorporates the

presence of foreign reads via rigorousmaximum-likelihood

detection.

PDHMM and column-wise detection

Variant callers, such asGATKHaplotype Caller andDRAGEN,use

Debruijn Graph to re-assemble reads in order to determine

candidate haplotypes and identify potential variant sites. In regions

of the genome with tandem repeats, structural variants, or clusters

of sequencing errors, lower sensitivity can result from failure of the

graph assembly methodology to give a complete list of candidate

haplotypes and variant sites.

Column-wise event detection supplements the Debruijn graph by

scanning each column of an active region for potential variant sites

(SNPs and indels) and completing the list of candidate haplotypes.

This restores sensitivity in regionswhere the graph fails.

Impact of FRD/BQD on QUAL/GQ/QD and post-VCF

hard-filte r ing

DRAGEN v3 Variant Caller has implemented two algorithms that

model correlated errors across reads in a given pileup, foreign read

detection (FRD) to detectmismapped reads, and base quality drop

off (BQD) algorithm to detect correlated base call errors. Besides

improving specificity and sensitivity, these two algorithms have an

impact/benefit at two levels:

Confidence score (QUAL, GQ, QD ) va lues are in a

rea listic Phred-sca le range.

Conventional variant callers typically output inflatedQUAL values

in Phred scale in the range of few thousandswhich have no

practical meaning statistically. Modeling correlated errors from

within the variant caller brings back these values to a statistically

realistic andmeaningful range.
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Dependency on post VCF filte r ing rules is substantia lly

r educed.

In conventional variant callers, because of the variant caller’s

inability to distinguish between correlated errors and true variants, it

was necessary to apply hard-filtering rules post VCF to filter out the

excess number of FP calls. Several VCF annotations (e.g., QD,

MQ, FS, MQRankSum) were compared to ad-hoc thresholds, to

flag calls as FP. Alternatively, those annotations could be fed to a

machine learning algorithm and trained against a truth set, and

false positive could then be filtered out based on the training (e.g.,

VQSR).

In DRAGEN v3, the algorithmswere improved at the core of the

variant caller and therefore the dependency on post VCF filtering

was substantially reduced. DRAGEN v3 default hard-filtering rule

simply usesQUAL with a threshold corresponding to the best

Fmeas (best tradeoff between sensitivity and specificity).

Detai led methods
Input datasets

Three data setswere selected to representmultiple library

preparation methods, both including and excluding PCR (TruSeq

DNA Nano, TruSeqDNA PCR-Free, andNextera DNA Flex). Each

data set was generated using NA12878 sample DNA. Following

DNA library preparation according to respective reference

guides,5-7resulting librarieswere sequenced in 2×150 paired end

runs on the NovaSeq™ 6000 System. To normalize the number of

reads, each data set was downsampled to 30×coverage with the

FASTQ Toolkit in BaseSpace Sequence Hub. All three datasets

are publicly available at BaseSpace Sequence Hub, so that

independent assessment of results can be performed.

Human reference genome

The genome reference usedwasHuman hs37d5 in the DRAGEN

BaseSpace app, and the equivalent genome reference was used

in local analysis for each pipeline under evaluation. This reference

includes decoys.8

Secondary ana lysis pipe lines

We compare three secondary analysis pipelines. The first pipeline

is DRAGEN v2 end to end (DRAGEN used for both mapping and

alignment stage and variant calling). The second pipeline is

DRAGEN v3 end to end. The third pipeline uses BWA-MEM for the

mapping and alignment stage andGATK4-HC for the variant

calling stage.

Tomake a fair comparison, we applied the same hard filtering rule

for all three pipelines, which consisted of applying a GQ threshold

to the prefilter VCFs. The thresholdwas selected to be close to the

best Fmeas point for each pipeline (Table 3).

Table 3: Optimal Fmeas QC thresholds

GQ for best Fmeas SNP Indel

DRAGEN v3.2.8 9 9

DRAGEN v2.5 2 8

BWA+GATK 1 2

DRAGEN was run on an on-premise server, aswell as in the cloud

using BaseSpace Sequence Hub. Although computing time is

slightly longer in the cloud, the variant calling results do not differ.

The BWA+GATK pipeline was run on the same on-premise server

as DRAGEN, where the BCBIO frameworkwas installed.9BCBIO

runs the BWA+GATK following the GATK best practice guidelines,

and also applies additional optimizations to improve parallelism for

run time speed up. For on-cloud analysis, the BWA+GATK pipeline

was run on Terra.

DRAGEN 3.3.0

DRAGEN App version:

DRAGEN Germline Pipeline 3.2.8

DRAGEN Host Software Version 05.011.281.3.2.8

BWA-Mem (0.7.17) + GATK4 (4.0.2)

Table 4: Parameters from the configuration file of BCBIO
algorithms

Parameter Value

align_split_size 5000000

aligner BWA

coverage_depth High

coverage_interval Regional

mark_duplicates True

merge_bamprep False

platform Illumina

quality_format Standard

realign False

recalibrate False

tools_off Vqsr

variantcaller GATK-haplotype

analysis: variant2

resources: gatk-haplotype

BWA+GATK on Ter ra

Analysis ready Bam files from BWA-Mem (from BCBIO runs) were

used as inputs to run GATK on Terra. Briefly, we followed the

GATK4-germline-snps-indels (https://github.com/gatk-

workflows/gatk4-germline-snps-indels) workflowwith

modifications in specific parameters tomatch the parameters in

BCBIO runs. All the runswere executedwith a free trial account on

Terra.

ExactWDLmethod is available in BaseSpace Sequence Hub

public data.

WDLMethod configurations:

GATK docker image: broadinstitute/gatk:4.0.2.0

GITC docker: broadinstitute/genomes-in-the-cloud:2.3.1-

1500064817
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Reference fasta: hs37d5 (same as other pipelines)

Only raw VCF fileswere generated in this pipeline. Post filtering was

performed locally. Raw VCF files are available in BaseSpace

Sequence Hub public data.

Basespace (January 2019) Specify the spec of the AWS F1

instance used (AWS F1 4× large).

BaseSpace Sequence Hub app version: 3.2.8

Table 5: Local Server (CentOS 7 x86_64, Supermicro 1029)

Part Full Model Name Notes

Chassis SYS-1029GQ-TNRT 1 rack unit

CPU
2 x Intel(R) Xeon(R) Gold 6126 CPU@
2.60GHz

24 cores, 48 threads

RAM 384GB DDR4, 2666MHz

Staging Intel SSDPE2KE020T7 2TBNVME

Benchmark truth set (N IST)

Benchmarking of variant calls requires a specific reference

genome and an associated set of calls that represent the “true

answers” for that genome. Such call sets have the property that

they can be used as “truth” to accurately identify false positives

and negatives. For this study, the used truth set was based on

reference calls based on the same source of DNA (NA12878) that

were established by National Institute of Standards and

Technology (NIST). The Genome in a Bottle Consortium (GIAB) is a

public-private-academic consortium hosted by NIST. GIAB

published a benchmark set of small variant and reference calls for

its pilot genome, NA12878, characterizing a high-confidence

genotype for approximately 90%of GRCh37 andGRCh38.

True positives (TPs) are variant calls that agree with reference calls

from the NIST truth set. False positives (FPs) are variant calls that

do not exist in the truth set, and false negatives (FNs) are variants in

the truth set that were not called in the QUERY VCF.

The Variant Calling Assessment Tool (VCAT) was used to compare

each QUERY VCF file to the NIST truth set v3.3.2. This tool runs

hap.py using the RTG vcfeval evaluation engine. TPs, FPs, and

FNswere determined by hap.py’s output files

*roc.Locations.INDEL.csv and *roc.Locations.SNP.csv of TRUTH

TP, QUERY.TP, QUERY.FP, and TRUTH.FN. The matching

stringency type used to calculate TP, FP and FN is “genotype

match” (cf. [1]), forwhich only siteswith matching alleles and

genotypes are counted as TP. Thismeans genotype errors and

allele mismatches are counted as both FPs and FNs.

Benchmark ing eva luation metr ics

For speed comparisons, the total run time in seconds, from FASTQ

to VCF, is derived from analysis log files and/or from analysis times

shown in reports.

To perform accuracy comparisons across various pipelines, we

use recommended standards in performance metrics (Table 6).1

Precision is the metric representing analytical specificity, or the

ability to correctly identify the absence of variants or “absence of

false positives”. Recall is the metric representing analytical

sensitivity, or the ability to detect variants that are known to be

present or “absence of false negatives”.

Definitions and calculations formetrics involvedwith the precision

and recall numbers are as based on reference.
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Table 6: Definitions and calculations for metrics involved with precision and recall

Metric Commonname Definition Formula

TRUTH.TP
True positives

(Truth)
Number of truth calls for which there is a query call that is

consistent with the truth call and its genotype

QUERY.TP
True positives

(Query)
Number of query calls for which there is a truth call that is

consistent with the query call and its genotype.

TRUTH.FN False negatives
Number of truth calls for which there is no query call that is

consistent with the truth call and its genotype

QUERY.FP False positives
Number of query calls for which there is no truth call that is

consistent with the query call and its genotype.

METRIC.Recall Recall, sensitivity
Fraction of truth calls that are consistent with a query allele

and genotype call within the confident regions
TRUTH.TP / (TRUTH.TP + TRUTH.FN)

METRIC.Precision
Precision, positive
predictive value

Fraction of query calls that are consistent with a truth allele
and genotype call within the confident regions

QUERY.TP / (QUERY.TP + QUERY.FP)
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